Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions

The ongoing emission of greenhouse gases (GHGs) is triggering changes in many climate hazards that can impact humanity. We found traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry. By 2100, the world’s population will be exposed concurrently to the equivalent of the largest magnitude in one of these hazards if emissions are aggressively reduced, or three if they are not, with some tropical coastal areas facing up to six simultaneous hazards. These findings highlight the fact that GHG emissions pose a broad threat to humanity by intensifying multiple hazards to which humanity is vulnerable.

Continuous emissions of GHGs are simultaneously shifting many elements of Earth’s climate beyond thresholds that can impact humanity. By affecting the balance between incoming solar radiation and outgoing infrared radiation, man-made GHGs are increasing the Earth’s energy budget, ultimately leading to warming. Given interconnected physics, warming can affect other aspects of the Earth’s climate system. For instance, by enhancing water evaporation and increasing the air’s capacity to hold moisture, warming can lead to drought in places that are commonly dry, in turn ripening conditions for wildfires and heatwaves when heat transfer from water evaporation ceases. There are opposite responses in places that are usually humid where constant evaporation leads to more precipitation, which is commonly followed by floods due to soil saturation. The oceans have the added effect of warming waters, which enhance evaporation and wind speeds, intensifying downpours and the strength of storms; storm surges can be aggravated by sea-level rise resulting from the larger volume occupied by warmed water molecules and melting land ice. Other interrelated changes in the ocean include acidification as CO₂ mixes with water to form carbonic acid, and reduced oxygen due to (1) reduced oxygen solubility at higher temperatures and (2) changes in ocean circulation that affect the mixing of surface waters rich in oxygen with deeper oxygen-poor water. These climate hazards and their impacts on human societies occur naturally but are being non-trivially intensified by man-made GHG emissions, as demonstrated by active research on detection and attribution (discussed under Caveats in the Methods). With few exceptions, changes in these hazards have been studied in isolation, whereas impact assessments have commonly focused on specific aspects of human life. Unfortunately, the failure to integrate available information most probably underestimates the impacts of climate change because: (1) one hazard may be important in one place but not another; (2) strong CO₂ reductions may curb some, but not all, hazards (see Supplementary Fig. 1), and (3) not all aspects of human systems are equally challenged by climate hazards. A narrow focus on one or a few hazards may therefore mask the changes and impacts of other hazards, giving an incomplete or misleading assessment of the consequences of climate change.

Here we highlight the broad and heightened threat to humanity from ongoing GHG emissions intensifying multiple climate hazards to which humanity is currently vulnerable. To build our case, we carried out a systematic literature search to identify observed...
Climate hazards were related to numerous conditions that disrupt body function. Increased morbidity (such as cardiac and respiratory disorders) due to heat illness occurred during heatwaves, whereas injuries were common during floods, storms and fires. Respiratory problems were associated with increased ozone pollution from heatwaves and fires, dust from droughts, mould following storms, organic pollutants released from melting ice and pollen released during extended flowering periods caused by warming. By increasing the habitat suitability of pathogens and vectors, warming and precipitation changes contributed to epidemics of malaria, dengue fever, salmonellosis, cholera, leptospirosis, bluetongue disease and campylobacteriosis. Similarly, warming facilitated the range expansion of vectors implicated in outbreaks of plague transmitted by rodents, West Nile virus by birds, schistosomiasis by snails and encephalitis by ticks. Outbreaks also resulted from climate hazards increasing the proximity of vectors to people. For instance, forest fragmentation increased the density of ticks near people, triggering outbreaks of Lyme disease and encephalitis, fires drove fruit bats closer to towns, causing outbreaks of the Hendra and Nipah viruses, drought mobilized livestock near cities, causing outbreaks of haemorrhagic fever, and melting ice due to warming caused voles to find shelter in homes, increasing hantavirus infections. Likewise, floods, heatwaves and intense rain have been related to increases in snake bites due to inhospitable conditions forcing animals to move closer to people. Poor sanitation and contamination of the water supply due to storms and floods resulted in outbreaks of cholera, malaria, leptospirosis and diarrhoeal illness. Changes in ocean chemistry have favoured pathogen growth and harmful algal blooms related to seafood poisoning, cholera and ciguatera. Drought was associated with outbreaks of West Nile virus, leishmaniasis and chikungunya virus, and hantavirus when interacting with floods. Drought forced the use of unsafe drinking water, resulting in outbreaks of diarrhoea, cholera and dysentery. By increasing the concentration of particulates during dust storms, drought was also linked to valley fever, a disease caused by a fungal pathogen.

Climate hazards affected mental health. For instance, depression and post-traumatic stress disorder were reported after storms in the United States, floods in the United Kingdom and heatwaves in France. People experienced existential distress during drought in Australia, increased substance abuse after storms in the USA and poor mental health due to climate change in Canada (for example, the loss of sea ice has inhibited cultural practices such as hunting and fishing, leading to depression among Inuit people). Furthermore, suicidal ideation occurred in victims of drought, heatwaves, storms and floods.

Climate hazards were implicated in pre- and post-natal health problems. Children born to pregnant women exposed to floods exhibited increased bedwetting, aggression towards other children and below-average birth weight, juvenile height and academic performance. Similarly, exposure to smoke from fires during critical stages of pregnancy may have affected brain development and resulted in preterm delivery, small head circumference, low birth weight and fetal death or reduced survival. Finally, salinity in drinking water caused by saltwater intrusion and aggravated by sea-level rise was linked to gestational hypertension, which created serious health issues for both the mother and fetus.

Food impacts. We found ten attributes of food systems that were impacted by climate hazards, of which impacts on the quantity and quality of food from agriculture, livestock and fisheries were most commonly noted (Fig. 1). Agricultural yields were impacted by direct physical loss and indirectly by exceeding physiological thresholds of crop plants. Direct physical losses occurred due to storms (for example, roughly 35% of bean production was lost to Hurricane Mitch in Honduras in 1998), precipitation (a 10 mm
Climate hazards have impacted animals used for food. Livestock mortality was associated with warming (for example, the livestock disease bluetongue was positively correlated with increasing temperatures in Europe\(^\text{38}\)). Drought (in 2000, three quarters of livestock died due to drought in Kenya\(^\text{64}\)), heatwaves (one single day above 38 °C reduced annual yields by 5% in the United States\(^\text{58}\)), changes in temperature in Europe\(^\text{63}\), drought (by favouring bivalve predators that decreased shellfish populations\(^\text{72}\)), and floods (floods decreased the reproductive capacity of anadromous fish\(^\text{74}\)). Climate hazards also impacted the habitats of stocks, including fires (runoff due to fires increased the heavy metal content in lakes and rivers\(^\text{75}\)), precipitation (rains increased sediment and nutrient loading in lagoons\(^\text{65}\)), sea level (sea-level rise changed occurred each year there were strong heatwaves in the US Great Plains\(^\text{39}\)), floods (livestock losses totalled >236,000 during major floods in Bangladesh in 1987 and 1988\(^\text{66}\)) and natural land-cover change (in Sudan, for example, land-cover change reduced suitable grazing land\(^\text{67}\)). Heatwaves were related to a reduction in grazing, reproduction and milk production in cattle and high mortalities in chickens and turkeys\(^\text{68}\). There were also impacts on hunting, such as warming and melting sea ice in the Arctic shifting the distribution of walrus, leading to the loss of subsistence hunting grounds\(^\text{69}\). Meat quality was also impacted through contamination (higher than normal temperatures were associated with 30% of reported cases of salmonellosis in Europe\(^\text{70}\)).

Climate hazards were found to impact fisheries through reductions in the quantity and quality of fish populations. There were reductions in fish stocks due to warming both directly (warmer temperatures exceeded the thermal-tolerance of cod\(^\text{70}\) and high water temperatures reduced oxygen content, severely impacting salmonid reproduction\(^\text{11}\)) and indirectly (warmer temperatures altered food webs by reducing primary productivity\(^\text{39}\)). Direct stock mortality and changes to reproduction were caused by drought (by favouring bivalve predators that decreased shellfish populations\(^\text{72}\)), heatwaves (a heatwave in 1953 warmed Lake Erie, triggering nutrient pollution that caused a large fish kill\(^\text{73}\)) and floods (floods decreased the reproductive capacity of anadromous fish\(^\text{74}\)). Climate hazards also impacted the habitats of stocks, including fires (runoff due to fires increased the heavy metal content in lakes and rivers\(^\text{75}\)), precipitation (rains increased sediment and nutrient loading in lagoons\(^\text{65}\)), sea level (sea-level rise changed
the dynamics of coastal lagoons\cite{75}, ocean chemistry (changes in ocean chemistry increased coral bleaching, which decreased fish habitat\cite{76}) and natural land cover (introduced water hyacinth in Lake Victoria reduced fish quantity\cite{77}). The quality of fish was also impacted. Warming increased mercury methylation and has favoured the growth of pathogens involved in food poisoning\cite{78}. Floods, storms and fires were also related to increased heavy metal runoff, causing fish to accumulate mercury and increasing the risk of mercury poisoning in humans\cite{79}.

Water impacts. We found that the quantity and quality of fresh water were critically impacted by climate hazards (Fig. 1). Drought, warming and heatwaves caused wells to run dry and reduced water levels in reservoirs, forcing water shortages and mandatory water restrictions\cite{80,81,82}. Drought, for instance, led to temporary drinking water shortages for over 200,000 people in Puerto Rico in 1997–1998\cite{83} and 33 million people in China in 2001\cite{84}. Decreases in water supply were also attributed to land-cover change, including the spread of invasive plant species such as Tamarix spp., which increased evapotranspiration, costing US$65–180 million per year in reduced water supplies\cite{85,86}, and desertification, which led to losses in water storage in areas such as the Sahel\cite{87}. In mountainous regions, warming resulted in lower snow accumulation and the retreat of glaciers, causing lower groundwater levels and drinking water shortages\cite{88,89,90}. Temporary water shut-downs were also experienced as a result of intense storms, such as Hurricane Mitch in 1998, which left over four million residents in Honduras without water\cite{91}.

Water quality was critically impacted by climate hazards. The contamination of drinking water was caused by wildfires and drought that contributed to elevated levels of nutrients (nitrogen, phosphorus and sulfates)\cite{92}, heavy metals (lead, mercury, cadmium and chromium)\cite{93}, salts (chloride and fluorides)\cite{94}, hydrocarbons\cite{95}, pesticides\cite{96} and even pharmaceuticals\cite{97}. Heavy rains and flooding also increased nutrients\cite{98}, heavy metals\cite{99} and pesticides\cite{100} as well as turbidity\cite{101} and fecal pathogens\cite{102} in water supplies — especially when sewage treatment plants were overwhelmed by runoff\cite{103}. For instance, the 2010 Indus flood in Pakistan increased waterborne and infectious diseases, such as Cryptosporidium\cite{104}, whereas torrential rains in upstate New York in 1999 washed wastewaters into aquifers, sickening over 1,100 adults and killing several children\cite{105}. Sea-level rise has led to seawater contamination of drinking supplies globally, including areas in Bangladesh\cite{106}, Spain\cite{107}, New England\cite{108} and the Pacific Islands\cite{109}.

Infrastructure impacts. We found 21 attributes of infrastructure impacted by climate hazards (Fig. 1), of which the electricity, transportation and building sectors were most critically affected. Impacts to electricity and the electrical grid were commonly cited. Heatwaves, for instance, caused overheated power lines to sag into trees and short out\cite{110}. Heatwaves also reduced the efficiency of power generation and hydroelectric power production from a loss of generator cooling\cite{111,112}. Droughts reduced hydroelectric generation due to low water supplies\cite{113}, and dry soil conditions acted as an insulator causing overheating and melting of underground cables\cite{114}. These impacts on electricity generation and conduction frequently coincided with peak demands during heatwaves at times resulting in complete shut-downs. Blackouts due to heatwaves have impacted millions of people around the world. For example, large-scale blackouts affected ~670 million people in India in 2012\cite{115}, ~35 million in the Saudi Kingdom in 2010\cite{116}, ~500,000 in Southern Australia in 2009\cite{117}, ~200,000 in Buenos Aires in 2014\cite{118} and ~50 million affected in the northeast United States and Canada in 2003. Extreme rainfall\cite{119}, flooding\cite{120,121} and large storms\cite{122,123} also caused widespread power outages, and affected electricity markets due to damaged offshore oil and gas structures\cite{124,125}.

Impacts on transportation infrastructure were common. Storms have flooded roads\cite{126}, railway lines\cite{127,128} and wiped out bridges\cite{129}, ports\cite{130} and levees\cite{131}. Floods have crippled national transport networks\cite{132}, halted rail service\cite{133}, shut down freight transport\cite{134} and stranded city residents\cite{135,136,137}. Heatwaves caused railways\cite{138,139} and roads to buckle\cite{140}, asphalt to melt\cite{141}, and concrete roads and bridge joints to crack due to thermal expansion\cite{142}. Heatwaves have groundered airplanes because hot air is less dense than cold air, thus requiring additional speed that airplanes may not be able to achieve on short runways\cite{143,144}. Fires have repeatedly disrupted land, air and sea transport (for example, across Southeast Asia\cite{145}) whereas drought has hampered river navigation (across Europe in 2003\cite{146}, for instance). Warming, and associated permafrost thawing, has destroyed roads and other critical infrastructure in northern latitudes\cite{147,148}.

Direct and indirect impacts to buildings were significant. Floods and storms damaged or destroyed millions of homes (approximately 12.8 million homes in Bangladesh, 8.7 million in China, 1.8 million in Pakistan, 450,000 in Jakarta, 425,000 in the United States, 45,000 in France, 30,000 in Australia and 30,000 in Jamaica). Fires from extreme droughts and heat also destroyed homes (more than 5,500 homes in Australia, 3,500 in California, 2,500 in Texas, and 2,000 in Russia). Glacial lake outbursts due to retreating glaciers in Nepal\cite{149} and landslides\cite{150} swept away entire areas, including villages\cite{151}. Critical ‘life-line’ infrastructures such as sewerage and water lines have been disrupted by storms, and electrical supply by heatwaves, with cascading impacts on business districts, hospitals, schools, communications and access to clean water and food\cite{152,153,154}.

Loss of cultural heritage sites was attributed to rising seas, flooding and thawing of permafrost\cite{155,156}, whereas droughts and increased salinity due to rising sea level damaged irrigation infrastructure\cite{157}. Rising temperatures and CO₂ concentrations led to corrosion and deterioration of concrete infrastructure\cite{158}.

Global loss of beaches and coastal infrastructure has resulted from increases in sea level, storms, ocean swells and associated flooding, erosion and slumping\cite{159,160}. The loss of coastal land was related to storms and sea-level rise, which claimed entire islands\cite{161}. Warming and the subsequent melting of ice forced the relocation of native villages in Alaska\cite{162}. Natural cover lost in coral reefs, mangroves and wetlands reduced coastal protection, intensifying the effects of storms and tsunamis on infrastructure\cite{163}.

Economic impacts. We found 16 attributes of the economy impacted by climate hazards (Fig. 1), including economic losses, diminished labour productivity, jobs and revenue. Economic losses were often most dramatic after extreme events, and encompassed immediate costs such as those associated with property damage as well as indirect costs. Immediate direct losses included those from drought (for example, US$1.84 billion in direct agricultural losses in 2015 in California\cite{164}), storms (US$130 billion in damage from Hurricane Katrina\cite{165}), floods ($9.1 billion in losses from the 2002 Elbe flood in Germany\cite{166}), and fires (US$4.1 billion in costs in 1997 in Indonesia\cite{167}). The loss of natural land cover was also related to economic costs (for example, by reducing coastal protection, storm damages have increased by US$30,000 for each hectare of destroyed wetland in the United States\cite{168}). Extreme events also had indirect costs, which can have long-term impacts — as in the case of Hurricane Iniki, where the local economy in Kaua‘i, Hawai‘i, was still suffering losses over a decade later\cite{169}. Indirectly, climate hazards increased commodity prices. For instance, heatwaves, droughts and fires during the summer of 2010 in Russia cut local grain production by one-third, ultimately doubling wheat prices globally\cite{170}. Storms affected access to and the price of insurance. For instance, Hurricane Andrew led to the insolvency of 12 insurance companies\cite{171} and many firms now refuse to issue new policies for properties within a mile of the ocean on the east.
coast of the United States. Furthermore, a lack of insurance has made it difficult to obtain mortgages for coastal properties in the Bahamas. Climate hazards also affected the cost and availability of energy resources: heatwaves in 2003 and 2006 in Europe led to a 40-fold increase in the cost per megawatt hour in the European Energy Exchange, damages to oil rigs during Hurricane Katrina temporarily increased fuel prices and drought in Brazil reduced sugar crop production, leading to record high sugar prices and a decline in ethanol production.

Climate hazards impacted job availability as well as work capacity. Heatwaves lowered labour productivity, as observed in Australia, where absenteeism increased during heatwaves, and in India and Vietnam, where heatwaves led to longer workdays to compensate for periods of rest during the hottest hours of the day. Storms and floods disrupted the functioning of industries, resulting in an immediate loss of jobs. Job losses were also related to drought (in areas where agriculture is a large part of the economy, for example), warming (in North America timber jobs were lost due to warm temperatures resulting in pine beetle infestations) and ocean chemistry (in Peru direct and indirect job losses are often linked to climatic impacts on marine fisheries).

Impacts on revenue-generating activities were documented, with tourism-based economies being particularly sensitive. Climate hazards reduced the number of visitors to national parks in the United States due to increased temperatures, and in Taiwan due to storms. Droughts had distinct impacts on the recreation industry (for example, river-rafting outfitters in Colorado lost 40% of their revenue) as well as other sectors (US$2.5 billion of revenue lost by the cattle industry in Mexico) (see Methods). The impacts of temperature on winter- and ocean-related activities were particularly acute. Although snow can be artificially produced, warmer winters generally meant fewer visitors and lower revenue to ski resort destinations, as observed in the Alps and Australia. Changes in ocean chemistry degraded coral reef conditions, which were associated with a decline in recreational dives in Thailand and affected annual whale migrations, causing early closure of the whale-watching season in Australia.

Security impacts. We identified 11 attributes of human security impacted by climate hazards (Fig. 1), critically related to dislocations, increased conflict and violence, and disruption of the social fabric. Climate hazards forced hundreds of millions of people out of their homes for different reasons and durations, including evacuation (temporary planned movement), displacement (unplanned forced change of residence) and migration (permanent change of residence). For example, hundreds of thousands of people were displaced after floods in China and Pakistan, and storms in Central America, the United States and Bangladesh, to name a few. The recurrence of climate hazards also caused temporary displacement to become permanent; in Bangladesh recurring floods forced some rural inhabitants to move to urban squatter settlements. We found several cases of planned migration of coastal communities due to permafrost melting and recurring flooding and sea-shore erosion due to sea-level rise and storms (for example, indigenous communities in the United States, the Solomon Islands and India). Multiple cases of mass migration have occurred due to droughts, natural land-cover change and extreme precipitation. Extreme heat was also the lead driver of migration in rural Pakistan due to the loss of crops and farming income. Climate hazards contributed to increasing conflict over access to resources and may have acted as a catalyst for violence. Drought, for instance, has triggered conflicts over water rights and access. Ocean chemistry was linked to shifts in the distribution of commercial fish species and the uncovering of new resources under melting sea ice generated geopolitical tensions over their use, including military build-up in the Arctic region. Climate hazards, although not necessarily the sole or even primary driver, have been suggested to ripen conditions leading to violence. However, such pathways remain uncertain and are likely to be diverse, including impacts on migration and reduced supply of resources, jobs and commodity prices compounded with socio-economic factors, such as inequality and failing governance. For instance, changes in precipitation and drought resulted in a scarcity of suitable pastoral and crop land, triggering sectarian and intercommunity violence in the Horn of Africa, increased food prices associated with violence across Africa and food shortages that facilitated rebel recruitment in Burundi. Drought was also an influencing factor in migration to urban areas, adding to the unemployment and political instability that contributed to bloodshed in Syria and Somalia. Excess rainfall has also correlated with violent conflict in Africa. The probability of civil conflicts was nearly double during El Niño years compared with La Niña years. Post-1950, warming or a change in precipitation by one standard deviation increased risk of interpersonal violence by 4% and intergroup conflicts by 14% globally.

Impacts of climate hazards on the social fabric were found, including instances of violence, exacerbated gender inequality and breakdown of social order. High temperatures can increase anger and arousal, affecting how people respond to provocation, which can aggravate acts of interpersonal violence and violent crimes during heatwaves. In the United States, for instance, warming by 0.5°C aggravated rates of rapes by 0.20, robberies by 0.84, burglaries by 8.16, and larcenies by 10.65 per 100,000 people. The breakdown of law and order during extreme rainfall and storms has been linked to interpersonal violent behaviours including battering and rape. Likewise, anomalously high or low rainfall was tied to a two-fold increase in the number of ‘witches’ murdered in Tanzania. Hydrometeorological disasters have also been associated with increased instances of domestic violence; for example, after the 1993 flood in the midwestern United States, a significant increase in cases of battered women was reported. It is worth noting that there has been considerable discussion over the relative role of the climate hazards on human conflict.

Global map of cumulative climate hazards
Our overview of observed impacts reveals the high vulnerability of humanity to climate hazards (Fig. 1). As different hazards can impact numerous aspects of human systems (Fig. 1) and may require varied types and costs of adaptation, the simultaneous exposure of future societies to multiple climate hazards constitutes a considerable concern. To provide insight into this issue, we collected projections for the same hazards for which impacts were surveyed in our literature review and constructed a cumulative index of their geographical co-occurrence. Specifically, we collected projections for warming, heatwaves, precipitation, floods, droughts, fires, sea level, storms, natural land cover and ocean chemistry; we also included projections of freshwater scarcity (Fig. 2). Hazard projections were based on the recent Coupled Model Intercomparison Project Phase 5 under Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5, which represent a range of mitigation scenarios in which GHGs are considerably slowed (RCP 2.6) or continue to rise throughout the twenty-first century (RCP 8.5), with RCP 4.5 being in the middle of such extremes. Changes in the projected hazards were scaled to their largest projected change by 2095 under RCP 8.5, and summed to generate an overall cumulative index of climate hazards (see Methods). The index provides a relative indication of the extent to which the largest projected changes in the hazards will co-occur. The effect of multimodel uncertainty in the cumulative index of climate hazards is shown in Supplementary Fig. 4. Among hazards, the geographical distributions of projected changes were poorly correlated, with no single hazard having a predominant role in the overall cumulative index of climate hazards (Supplementary Table 1). For instance, there was little concordance
in the spatial patterns of change in drought, floods and water scarcity compared to precipitation, despite the latter being an underlying driver of the former. This reflects the effects of topography, soil type and human uses that act as modifiers for precipitation patterns. Likewise, warming (which is projected to intensify at higher latitudes) was poorly related to the spatial patterns of change observed in most other hazards (Fig. 2, Supplementary Table 1). Overall, the geographical variability of projected changes in the different hazards highlights the need for analysis that integrates different climate hazards and the potential for underestimation of projected climatic changes when examining one or a few hazards. Globally, the largest intensification of drought is projected to occur in Europe, North America and South America (Fig. 2). Fires are projected to intensify in Australia but decline over the south Sahara. Floods are projected to increase in South America, Southeast Asia and northern Russia. Deadly heatwaves are projected to increase in duration over most tropical areas, while storms are projected to increase in intensity over pantropical regions. Precipitation is projected to increase over tropical areas and high latitudes, but decrease at mid-latitudes. Water scarcity will intensify over many regions of Africa and America. When cumulative patterns of change in all hazards are combined, the largest co-occurrence of changes is projected in the tropics, generally isolated to coastal regions (Fig. 2). Coastal areas of Southeast Asia, East and West Africa, the Atlantic coast of South and Central America will be exposed concurrently to the largest changes in up to six climate hazards if GHGs continue to rise throughout the twenty-first century (RCP 8.5, Fig. 2), or three under strong mitigation of GHGs (RCP 2.6, Supplementary Fig. 3).

When we examined how the cumulative patterns of future change relate to human populations (see Methods), we found that globally, half of the world’s population will be exposed to the equivalent of the largest change in one full hazard under RCP 2.6 and approximately three hazards concurrently under RCP 8.5 (Fig. 3a–c). This suggests that even under strong mitigation scenarios, there will still be significant human exposure to climate change. Patterns of exposure to cumulative climatic hazards showed similar trends among countries with different levels of wealth (Fig. 3d–f). In our bibliographic search of impacts from climate hazards, we found differential responses from exposure to similar climate hazards, highlighting the variation in adaptation capacity (Supplementary Note 2). The largest losses of human life during extreme climatic events occurred in developing nations, whereas developed nations commonly face a high economic burden of damages and requirements for adaptation (Supplementary Note 2). Thus, while it is commonly noted that developing nations will face most of the burden of current and projected climate change,^{181–183} our integrative analysis of impacts reveals that developed nations will not be spared from adverse impacts.

Concluding remarks
Our assessment of the literature yielded a small number of positive and neutral responses of human systems to climate hazard exposure (reviewed in Supplementary Note 2). We surmise that the reduced number of positive or neutral impacts may be real, but may also reflect a research bias towards the study of detrimental impacts (discussed under Caveats in the Methods). This small set of positive and neutral impacts, however, cannot counterbalance any of the many detrimental impacts that were uncovered in our literature search, particularly when many of these impacts are related to the loss of human lives, basic supplies such as food and water, and undesired states for human welfare such as access to jobs, revenue and security.

Given the vast number of components in coupled human–climate systems, assessing the impacts of climate change on humanity requires...
analyses that integrate diverse types of information. Contrasting temporal (Supplementary Fig. 1) and spatial (Fig. 2) patterns of climate hazards, compounded with varying vulnerabilities of human systems (Fig. 1), suggests that narrow analyses may not completely reflect the impacts of climate change on humanity. Our integrative analysis finds that even under strong mitigation scenarios, there will still be significant human exposure to climate change (Fig. 3d), particularly in tropical coastal areas (Fig. 2); such exposure will be much greater if GHG concentrations continue to rise throughout the twenty-first century (RCP 8.5, Fig. 3) and will not differentiate between poor or rich countries (Fig. 3). The multitude of climate hazards that could simultaneously impact any given society highlights the diversity of adaptations that will probably be needed and the considerable economic and welfare burden that will be imposed by projected climate change triggered by ongoing GHG emissions. Overall, our analysis shows that ongoing climate change will pose a heightened threat to humanity that will be greatly aggravated if substantial and timely reductions of GHG emissions are not achieved.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41558-018-0315-6

Received: 21 December 2017; Accepted: 21 September 2018; Published: xx xx xxxx

References

Methods

Synthesis of impacts. To compile the observed impacts on people from climate hazards, we searched Google Scholar from February to March 2017 using a full text search in English for publications on the impacts of ten hazards of the Earth’s climate system (warming, heatwaves, precipitation, floods, drought, fires, sea level, storms, natural cover change, ocean change) on six aspects of human life (health, food, water, infrastructure, economy and security). Our assessment of the Earth’s climate system was based not only on mean state changes (such as warming, precipitation, sea level, ocean chemistry) and extreme weather events (heatwaves, flood, drought, storms), but also on disturbances (such as fire). We included changes in natural land cover as one of the hazards because ecosystems are an intrinsic component of Earth’s climate system as they are both sources and sinks of carbon, affecting other hazards (for example, warming and precipitation via albedo and evapotranspiration) and directly affecting various aspects of human life. We also assessed impacts from changes in ocean chemistry given the key role of the oceans in the climate system and human dependence on ocean goods and services, especially for coastal and maritime societies. Our assessment of these impacts on human systems was based on aspects that we considered essential for human well-being. These six aspects, however, represent general categories within which many other facets of human life were assessed. For instance, we found numerous examples of impacts on cultural practices such as the breakdown of traditional hunting and fishing systems among indigenous communities (that is, a food impact), causing depression or even suicide (a health impact). The diversity of the aspects of human life assessed is reflected by the long list of sub-categories reported (Fig. 1).

To create a systematic process, we scrutinized the first 200 references that resulted from using each possible combination of the ten climate hazards and six aspects of human life as keywords. References included the academic literature, grey literature and popular press articles. From those references, we selected papers independent of whether reported impacts were positive or negative. Our search also included the references cited in the publications that were read to be as comprehensive as possible from >12,000 references that were screened comprising 72 chapters from the five IPCC assessment reports and the most recent National Climate Assessment Report for the United States, we identified 3,280 publications that were read to find examples of observed impacts.

For the purpose of quality assurance and standardization, we applied the following approach when searching for impacts in reference abstracts and texts:

(1) To ensure standardization, an impact was broadly considered as any example of an "impact of a climate hazard caused by an explicit aspect of human life in an explicit or implicit place and time." The criteria allowed us to identify the climate hazard and human aspect that was affected while ensuring the impact was empirically observed (that is, an impact could be traced to a place and time as reported in the literature). Mentions to impacts that lacked such traceable evidence were excluded. For instance, a claim such as "increased mortality has been observed during heatwaves" was not considered. This claim lacks the traceable evidence of when and where the heatwave that killed people happened. In turn, an example of a valid entry is: "During the 2003 European heatwave over 70,000 excess human deaths were observed." This latter entry provides traceable evidence that an explicit climate hazard (heatwave) impacted an explicit aspect of human life (mortality) in a given place (Europe) and time (2003).

(2) We created a public online database consisting of ten columns (one for each climate hazard) and six rows (one for each of the six aspects of human life assessed). We created subcategories (that is, added rows to the online table) within each primary aspect of human life to reflect the variety of documented impacts in the literature (for example, under the primary heading ‘food’, entries were separated into agriculture, livestock, marine fisheries and so on; see Fig. 1). On identifying an impact in a given paper, the user placed the reported impact in the online table at the intersection of the climate hazard (column) and attribute of human life (row) explicitly mentioned in the paper. Subcategories were created by the user who read the given paper using the terms provided in that paper, thus avoiding classification biases by the user who entered the data. This initial classification specificity was also intended to prevent ‘grouping’ of impacts into broad sub-categories and potentially losing the visibility of rare impacts. However, by using a central online database, any new subcategory was automatically available to others entering data thus reducing the duplication of subcategories. When the data entry stage ended, the authors met to integrate similar existing sub-categories as much as possible, while care was taken to avoid generating broad terms that could risk rare impacts being overlooked. For example, we found that climate hazards have impacts on the mental state of people ranging from depression, to addiction, affective disorder, PTSD and even suicide. These subcategories were maintained for better identification of the broad array of psychological responses to climate hazards.

To calculate human exposure to the cumulative changes in all hazards, we used an additive approach of standardized variables as developed in similar studies that examined the cumulative effect of human disturbances on land and sea. For each hazard, at each pixel in a global grid, we calculated the difference between the projected to occur in the pixel (Fig. 2, Supplementary Figs. 2 and 3). To calculate human exposure to the cumulative changes in all hazards, we used population data consistent with the climate emission scenarios (Fig. 2a–c). Historical population data up to 2005 was acquired from the Socioeconomic Data and Applications Center (http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count-future-estimates/data-download). Human population projections were obtained from Jones et al. (2011), who developed global population scenarios consistent with the shared socioeconomic pathways (SSPs) from 2006 to 2100. We paired RCP 2.6 with SSP1, RCP 4.5 with SSP3 and RCP 8.5 with SSP5. The vulnerability of the human population to cumulative climate change due to climate change probably requires a similar systematic review of the literature dedicated to that topic.
changes was also calculated separating countries by country-level per capita GDP (Fig. 3d–f). Data on per capita GDP were obtained from the World Bank World Development Indicators Database. We grouped low-, medium- and high-income countries on whether other or upper other per capita GDP was smaller than US$4,000, between US$4,000 and US$12,000 and larger than US$12,000, respectively.

A key source of uncertainty in the reported projections of climatic change is the ‘precision’ with which Earth climate system models predict change in the different hazards. Precision is defined here as the variability in projected changes from replicated Earth climate system models. To assess the effect of this source of uncertainty for each hazard, we gathered the average projections among Earth climate system models and their standard deviations. For each pixel, at each time step, we divided the standard deviation by the mean to calculate the coefficient of variation. We then removed any pixel for which the coefficient of variation was larger than one; then each remaining pixel could be plotted in the multimodel ensemble to form a projection. We then recalculated the overall cumulative index of climate hazards and compared results from the raw projections and the projections excluding uncertain pixels (Supplementary Fig. 4). As the effects of multimodel uncertainty were small (Supplementary Fig. 4), we reported results based on the raw data. To assess the spatial similarity in the projected change of different hazards, we calculated the cross-correlations between projected changes of all hazards (Supplementary Table 1).

Caveats. Our search of observed impacts yielded a much larger number of negative impacts than positive ones. This result could reflect a real disparity in the occurrence of impacts, but could also be a reflection of the large number of studies that such bias can emerge from two alternative sources: first, there is a bias in our search of the literature. We minimized this bias by carrying out a comprehensive search of publications on impacts regardless of whether impacts were positive or negative (see Methods). Second, there is a bias in the literature itself towards reporting negative impacts. We consider that this bias could be real, as from a ‘risk’ perspective a crisis of severe impacts with negative consequences for humanity, there is no mechanism for us to quantify such biases within our literature review. This is because publications are probably related to issues of novelty and broad public interests as opposed to how common impacts are. However, even if there is a bias towards negative impacts in the literature, this does not invalidate any of the impacts that have already been observed nor their purpose for this Review, which was to highlight the broad threat to humanity from changes in climate hazards.

From this study it is not possible to quantify the temporal or spatial prevalence of impacts that have been reported. Unfortunately, because our study is based on a compilation of the literature, it is not possible for us to quantify the prevalence of specific impacts as publications are probably related to scientific novelty and interest as opposed to how frequent or important impacts may be. For instance, there may be few examples of impacts of hazards on culture or even loss of islands to sea-level rise because as they may not have garnered broad scientific interest or may not be readily quantified, but these impacts are real and important nevertheless — yet a single report of a case example can reveal that such impacts do occur. Given this limitation, the section on observed impacts on human systems should be taken as descriptive of feasible pathways through which hazards can impact humanity, without indicating the prevalence or importance of such impacts.

We caution that our literature search was restricted to impacts on people from climate hazards, and no other aspects related to climate change. Although our survey of the literature yielded some case examples of adaptations, positive and differential impacts (Supplementary Note 2), these are unlikely to reflect the full scope of the adaptations, opportunities and trade-offs associated with climate hazards. The large array of cases that we uncovered with a systematic literature search on only climatic impacts suggests that a better understanding of those issues (adaptations, positive and differential impacts) will require their own comprehensive studies. Our assessment of impacts was also restricted to those that affect only people; we excluded impacts on ecosystems unless they had ramifications for human life (such as food and water supply, tourism). The broad impacts of climate change on ecosystems have been the topic of similar analysis2,51–54. We surmise that some aspects of human life lend themselves to more than a single adaptation, and these will probably vary across space and time depending on the severity of the impacts on people. However, as noted in this study, all climate hazards have shown considerable impacts on humanity that vary across space and time26, making a ranking of these hazards very speculative. Likewise, climate hazards could be grouped by their physical interconnections (such as terrestrial hazards related to the atmosphere or temperature and so on). However, small correlations in the projected spatial patterns of climate hazards (Supplementary Table 1) support the treatment of all climate hazards independently. A related limitation is the issue of interactions among hazards, which may result in different magnitudes of impacts. For instance, in the presence of deforestation, the impacts of hurricanes may be more damaging to coastal areas. In contrast, drought may reduce vector-borne disease outbreaks that are likely to result from mosquito range expansion brought about by warming. It would be a challenge to document all of the potential and observed interactions, but it certainly highlights the importance of additional studies to investigate the myriad of hazards and responses from ongoing climate change.

An alternative approach would be to weight individual hazards that are likely to result from mosquito range expansion brought about by warming.

Data availability
Data on cumulative climate hazards are available in an interactive web app at https://maps.esri.com/MoraLab/CumulativeChange/index.html. Records of impacts and related references are provided at http://impactsatclimatechange.info. All other data and sources used in this study are available within the text.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange
References